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Abstract

A level set method combining features of front tracking methods and fixed domain methods is presented to model
microstructure evolution in the solidification of multi-component alloys. Phase boundaries are tracked by solving the
multi-phase level set equations. Diffused interfaces are constructed from these tracked phase boundaries using the level
set functions. Based on the assumed diffused interfaces, volume-averaging techniques are applied for energy, species and
momentum transport. Microstructure evolution in multi-component alloy systems is predicted using realistic material
parameters. The methodology avoids the difficulty of parameter identification needed in other diffused interface models,
and allows easy application to various practical alloy systems. Techniques including fast marching, narrow band com-
puting and adaptive meshing are utilized to speed up computations. Several numerical examples are considered to val-
idate the method and examine its potential for modeling solidification of practical alloy systems. These examples include
two- and three-dimensional solidification of a binary alloy in an undercooled melt, a study of planar/cellular/dendritic
transition in the solidification of a Ni–Cu alloy, and eutectic and peritectic solidification of an Fe–C system. Adaptive
mesh refinement in the rapidly varying interface region makes the method practical for coupling the microstructure evo-
lution at the meso-scale with buoyancy driven flow in the macro-scale, which is shown in the solidification of a Ni–Al–
Ta ternary alloy.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Simulation of solidification and crystal growth processes has been of growing interest because of its impor-
tance in many technological applications. The classical Stefan problem with a sharp interface is a well accepted
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model of solidification of pure materials and alloys. Front-tracking techniques have been used successfully to
reproduce the complex dendritic structure in crystal growth in undercooled melts [1–5]. Such methodologies
directly enforce the freezing interface temperature (Gibbs–Thomson) relation and energy balance (Stefan)
condition. However, the complexity for handling interfaces in all possible solidification conditions such as
advancing/receding, merging/splitting and interface unit normal vector/curvature computations limit the
applicability of front-tracking methods to single solid phase systems.

Phase field methods have been used extensively for modeling solidification processes for various systems
including pure materials, binary alloys and multi-component alloys [6,7]. The basic idea is to employ a phase
field variable U that varies smoothly from zero to unity between the two phases over the diffused-interface
region, which has a small but numerically resolvable thickness. The phase field variable is used to distribute
the interfacial forces over the diffused freezing region. It is governed by a phase field control equation derived
from the thermodynamics of phase transition. Important physical mechanisms, such as curvature, anisotropy
and kinetics effects, are implicitly incorporated in the phase field control equation. This leads to many com-
putational advantages. For example, one does not need to compute interfacial geometric quantities such as
interface curvature and outward normal vector.

The phase field method reduces to the standard sharp interface formulation in the limit of vanishing inter-
face thickness. The quality of the solution deteriorates with increasing interface thickness. It has been shown
that the interface thickness must be smaller than the capillary length for the solution to converge to the sharp
interface limit [8,9]. This leads to significant computational effort especially for modeling dendritic growth in
the presence of convection. However, the techniques of adaptive gridding and parallel computing have
resulted in assuaging this drawback to some extent [10,11]. Another drawback of the phase field methods is
related to the large number of parameters involved in the solution of the evolution equations that are rather
difficult to compute for real materials.

The level set method handles the sharp interface front directly and efficiently, and avoids the asymptotic
analysis needed in phase field models [12,13]. In this method, interfacial geometric quantities such as cur-
vature and outward normal can be easily calculated using the level set variable /, which is the signed dis-
tance from the interface. The method was first applied to Stefan problems in [14]. Level set calculations for
dendritic growth were reported in [15]. In these works [14,15], the heat flux at nodes near the interface is
interpolated in order to calculate the interface velocity via the Stefan condition. Direct application of tem-
perature boundary conditions on the interface and the computation of heat fluxes from the temperature
nodal values usually lead to energy conservation issues associated with discretization error. This may result
in large variation of the computed crystal shapes if meshes of different sizes and orientations are used. In
our previous work [16], an energy conserving implementation of the level set method was used to study pure
material solidification without the need to apply the temperature boundary condition explicitly at the freez-
ing interface. The basic idea is to track the interface using the level set method, but perform the heat and
momentum transport computation in a diffused-interface, which is constructed from the level set computed
values.

In this work, our earlier model is extended to binary alloy and multi-component alloy systems. For systems
with multiple solid phases, phase boundaries are tracked by solving the multi-phase level set equations. Com-
putations are performed on unstructured meshes (triangle meshes in 2D and tetrahedral meshes in 3D) using
adaptive refinement. To the best of our knowledge, this computationally-intensive work provides the first
reported development and finite element method implementation of level set methods for binary and multi-
component alloy solidification in both two- and three-dimensions including the effects of melt flow. The plan
of this paper is as follows. Section 2 introduces the sharp interface model including the effects of fluid flow.
Section 3 discusses a diffused-interface approximation of the Stefan problem using volume-averaging tech-
niques. Numerical techniques including multi-phase motion re-initialization, fast marching, adaptive meshing,
narrow band computing, adaptive time stepping, finite element implementation and the overall solution pro-
cedure are discussed in Section 4. Section 5 presents applications to binary alloy crystal growth, a planar/cel-
lular/dendritic transition study, three-dimensional crystal growth, eutectic/peritecitc multi-phase growth and
ternary alloy solidification with melt convection effects. A mesh anisotropy study and a mesh adaptive refine-
ment study are included in the binary alloy crystal growth example. Finally, Section 6 provides a brief sum-
mary of this work.
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2. Sharp interface model for the solidification of multi-component alloys

Let us consider the solidification of an alloy system with n components that results in N phases. Each phase
a is assumed to occupy a region Xa with temperature Ta and concentration Ca

i , for each component i. Each
pair of these regions, Xa and Xb, are separated by the interface Cab, which is ; when the two phases are
not neighboring each other. The phase domain Xa is time-dependent and its boundary Ca, which is a union
of interfaces with all other phases (Ca = ¨c6¼aC

ac), is moving with normal velocity Va. The unit normal vector
na is defined as pointing away from the phase region Xa. The total domain X = ¨aX

a containing all phases and
its external boundary oX is assumed to be time-independent. On the interface of two phases Cab, which is a
part of both Ca and Cb, the normal growth velocities and unit normal vectors are related as Va = �Vb and
na = �nb, respectively. In this work, we use the subscript i to denote different species with i = 1 indicating
the major component and i = 2, 3, . . ., n the minor components. The superscript a is used to denote different
phases with a = 1 referring to the liquid phase and a = 2, 3, . . ., N the various solid phases. To emphasize the
differences between the solid phases and the liquid phase, we also use s to denote different solid phases with
s = 2, 3, . . ., N and ‘ to denote the liquid phase with ‘ = 1 (see Fig. 1).

To allow us to concentrate on key aspects of the solidification of multi-component alloy systems, the fol-
lowing assumptions are introduced for the transport of heat, momentum and solute:

(1) Constant density q, constant thermo-physical and transport properties for each phase including thermal
conductivities ka, heat capacities ca, latent heats of transformation of the liquid phase ‘ to each solid
phase s (denoted as Ls), partition coefficients of the liquid phase ‘ and solid phase s with respect to com-
ponent i (denoted as ks

pi
), solutal diffusion coefficients D‘

i , and viscosity l‘.
(2) Zero solute diffusivity in all solid phases, Ds

i ¼ 0, and negligible solid–solid phase transformation, Va = 0
on Cab, "a, b 6¼ ‘.

Following standard notation, the governing equations in the presence of fluid flow are given as follows:
r � vðx; tÞ ¼ 0; x 2 X‘; ð1Þ

q
ovðx; tÞ

ot
þrvðx; tÞvðx; tÞ

� �
¼ �rpðx; tÞI þr � l½rvðx; tÞ þ ðrvðx; tÞÞT� þ b; x 2 X‘; ð2Þ

qcs oT ðx; tÞ
ot

¼ ksr2T ðx; tÞ; x 2 Xs; s ¼ 2; 3; . . . ;N ; ð3Þ

qc‘
oT ðx; tÞ

ot
þ v � rT ðx; tÞ

� �
¼ k‘r2T ðx; tÞ; x 2 X‘; ð4Þ

oC‘
i ðx; tÞ
ot

þ v � rC‘
i ðx; tÞ ¼ D‘

ir2C‘
i ðx; tÞ; x 2 X‘; i ¼ 2; 3; . . . ; n; ð5Þ
where v is the melt flow velocity and b is the buoyancy body force.
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Fig. 1. Schematic of the solidification of a multi-component alloy system with multiple solid phases (here phases a and b).
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The temperature on the interface Cs‘ (denoted as T s‘
I ) is equal to the equilibrium temperature T s

�. This equi-
librium temperature is given from the Gibbs–Thomson relation as follows:
T s
� ¼ T s‘ðC‘

1;C
‘
2; . . . ;C‘

nÞ þ es
cj

s þ es
VV s; s ¼ 2; 3; . . . ;N ; ð6Þ
where T s‘ðC‘
1;C

‘
2; . . . ;C‘

nÞ is the liquidus temperature obtained from the phase diagram or thermodynamic dat-
abases, js is the curvature of the freezing interface, and es

c and es
V are the curvature and kinetic undercooling

coefficients, respectively.
With Cs

i ¼ ks
pi

C‘
i on Cs‘, solutal rejection at the solid/liquid interfaces is governed by the following equation:
D‘
i

oC‘
i

ons
¼ �ð1� ks

pi
ÞC‘

i V
sns on Cs‘; s ¼ 2; 3; . . . ;N : ð7Þ
The interface velocity Vs on Cs‘ is related to the heat flux jump at the freezing front by the classical Stefan
equation (interfacial energy balance) as follows:
V s ¼ �V ‘ ¼ ðqs � q‘Þ=ðqLsÞ on Cs‘; s ¼ 2; 3; . . . ;N ; ð8Þ

where q denotes the heat flux k$T Æ ns.

The level set function /a is defined to be the signed distance from the phase boundary Ca,
/aðx; tÞ �
þdaðx; tÞ; x 62 Xa;

0; x 2 Ca;

�daðx; tÞ; x 2 Xa;

8><>: ð9Þ
where da(x, t) is the normal distance of a point x from Ca. The phase boundary position is thus implicitly
stored in /a. The idea behind the level set method is to move /a with speed Va at phase boundary Ca, which
is extracted from Eq. (8). The equation of motion governing /a is given as follows:
/a
t þ V ajr/aj ¼ 0; a ¼ 1; 2; . . . ;N : ð10Þ
With the above introduction of the level set function, we will re-write the Stefan condition for the classical
Stefan problem as follows:
V s ¼ �V ‘ ¼ ðqs � q‘Þ=ðqLsÞ; qs ¼ lim
/s!0�

q; q‘ ¼ lim
/s!0þ

q on Cs‘; ð11Þ
where the notation 0+ and 0� is used here for notational simplification to denote the values of /s

(s = 2, 3, . . ., N) as we approach the freezing front from the solid and liquid sides, respectively.
The governing equations (1)–(5) in the phase domains Xa,a = 1, 2, . . ., N, the boundary conditions equa-

tions (6) and (7) on the solid–liquid interfaces Cs‘, ‘ = 1, s = 2, . . ., N, the evolution of the phase boundaries
given in Eq. (10) with velocity specified by the Stefan condition equation (11), and appropriate initial and
boundary thermal, solute and velocity conditions, completely define what we here refer to as the multi-com-

ponent alloy solidification problem.
3. Diffused-interfaces and modeling of transport processes

3.1. Important assumptions

Many of the difficulties in the implementation of the sharp-interface multi-component alloy solidification
problem defined earlier are related to the application of the thermal essential boundary condition given in
Eq. (6) and the solute rejection flux condition given in Eq. (7). To avoid directly applying these conditions
as needed in front tracking methodologies, we introduce a diffused-interface approximation to allow conve-
nient modeling of the underlying transport processes while still maintaining an explicit tracking of the phase
boundaries. This model was applied earlier for the solidification of pure materials [16]. Volume-averaging
approximations used extensively for macroscopic solidification process modeling will be used here for model-
ing dendritic alloy solidification. Using a diffused-interface model for the transport equations and volume-
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averaging to derive the corresponding equations is a well established approach for modeling solidification
using the phase field method [17].

Assumption 1. We assume that solidification occurs in a diffused zone of width 2w that is symmetric around
/‘ = 0. The parameter w used here is defined in terms of the spatial discretization selected (usually taken as the
size of one finite element) and it is not related to the physics of phase transformation which usually occurs on a
thickness of the order of atomic distances. The choice of w in this model is comparable to the choice for the
interface width in the phase field method, and can affect the accuracy of the results, just like in the phase field
method.

Following ideas similar to those in diffused-interface models, let us define the function Ua(x, t) as follows:
Uaðx; tÞ �
0; /aðx; tÞ > w;

1; /aðx; tÞ < �w;

�/aðx; tÞ=2wþ 0:5; /aðx; tÞ 2 ½�w;w�:

8><>: ð12Þ
This function was used in our earlier work [16] for the solidification of pure materials to define the liquid
volume fraction within the diffused-interface. However, this definition cannot be used for multi-component
alloy solidification. Indeed, for x near the phase interface Cab (/a < w, /b < w) and far away from triple points
(/c > w, "c 6¼ a, b), we have Ua + Ub = 1 and Uc = 0, "c 6¼ a, b and U can be used as phase volume fraction.
However, for x near triple points (interface of three phases) a, b and c (/a < w, /b < w, /c < w), we will have
Ua + Ub + Uc > 1 and U cannot be used as phase volume fraction. We herein introduce another variable for
phase volume fraction as follows:
�a � Ua=
X

b

Ub: ð13Þ
Assumption 2. The diffused-interface between a solid phase and the liquid phase is treated as a porous medium
with Kozeny–Carman approximation for the permeability:
Kð�‘Þ ¼ K0�
‘3

ð1� �‘Þ2
; ð14Þ
where K0 is a permeability constant taken to be a small value of 10�5 in our computations.

The above assumption is of no physical significance in the present calculations. It is simply for the conve-
nience of applying the no-slip boundary condition on the growing solid phases with a fixed-grid. This idea
of using a thin region near the interface to apply the no-slip condition is a well accepted technique in the liter-
ature. The present Kozeny–Carman approach for enforcing the no-slip condition depends on the selection of w

and is essentially equivalent to the one in [17]. In [18], another technique using variant viscosity in the diffused-
interface was applied to account for the no-slip condition on the solid–liquid interface. In our previous work
[16], we had shown that the variant viscosity and the Kozeny–Carman approach lead to nearly identical results
with velocity of very small magnitude within the thin artificially-constructed diffused solid–liquid interfaces.

Assumption 3. The solid–liquid interface temperature T s‘
I is allowed to vary from the equilibrium temperature

T s
� in such a way that
dT s‘
I

dt
¼ �kN ðT s‘

I � T s
�Þ; ð15Þ
where kN controls the rate with which T s‘
I is designed to approach the desired equilibrium temperature.

With the assumption of Eq. (15), and by further assuming that the mean temperature in the diffused-inter-
face (mushy) zone can be approximated as T s‘

I , the energy conservation for the diffused freezing zone leads to
what we here refer to as the extended Stefan condition [16]:
V s ¼ qs � q‘

qLs þ
2~csw

Ls kN ðT s
� � T s‘

I Þ; qs ¼ lim
/s!�w�

q; q‘ ¼ lim
/s!wþ

q on Cs‘; ð16Þ
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where ~cs � 0:5ðcs þ c‘Þ and the heat fluxes q‘ and qs are computed at the boundaries of the diffused-interface.
According to the stability analysis discussed in [16], kN is selected based on the time step size as kN = 1/Dt.

The extended Stefan equation is used to compute the interface velocity and evolve the interface. It weakly
enforces the Gibbs–Thomson relation on the moving interface. The other two important conditions on the
interface (the one governing solute rejection and the no slip condition for fluid flow) are also weakly enforced
using the volume averaging techniques that are reviewed next.

3.2. Brief review of the volume-averaging transport equations

In order to set forward the notation and fundamental equations used for modeling the transport phenom-
ena relevant to dendritic growth, in the section we will briefly summarize the volume-averaged transport equa-
tions applied to the diffused interface initially developed in [17] in the context of phase field solidification
models. A more detailed presentation is given in [19,20].

The equations representing momentum, energy, mass and species transport in each phase a take the follow-
ing general form:
oHa

ot
þr � ðHavaÞ ¼ r � Ja þ Sa; ð17Þ
for appropriate selection of the field variable H, diffusion flux J and source term S.
A phase function ma is introduced as taking value 1 in phase a and zero elsewhere. The volume-averaged

quantity ÆWaæ of any quantity W(x, t) in phase a over the entire averaging volume dV can now be introduced
as:
hWai ¼ 1

dV

Z
dV

Wamaðx; tÞdv: ð18Þ
Similarly, one can introduce the intrinsic volume-averaged quantity ÆWaæa (averaged value of W(x, t) in the
control volume dVa) as:
hWaia ¼ 1

dV a

Z
dV

Wamaðx; tÞdv ¼ hW
ai
�a

; ð19Þ
where �a was defined earlier in Eq. (13).
Finally, the fluctuating component Ŵa is commonly introduced to represent the deviation of Wa from the

intrinsic volume-averaged ÆWaæa. It is given by:
Ŵa ¼ ðWa � hWaiaÞma: ð20Þ

Multiplying each side of Eq. (17) by ma, integrating it over the averaging volume dV, one can obtain the

following averaged transport equation for phase a [19]:
ohHai
ot
þr � �ahHaiahvaia ¼ r � hJai þ hSai þ r � 1

dV

Z
dV
ð�cHa bvaÞdvþ 1

dV

Z
dAa

Ja � na dA

þ 1

dV

Z
dAa

HaðVa � vaÞ � na dA; ð21Þ
where dAa is the interfacial area of phase a with the other phases, na is the outward unit normal of the infin-
itesimal element of area dA of phase a, and Va is the growth velocity of the boundary of phase a.

In comparison with the original transport equation (17), three extra terms Ia
D, Ia

J and Ia
Q appear from the

volume-averaging procedure of the form:
Ia
D � r �

1

dV

Z
dV
ð�cHa bvaÞdv; ð22Þ

Ia
Q �

1

dV

Z
dAa

HaðVa � vaÞ � na dA; ð23Þ

Ia
J �

1

dV

Z
dAa

Ja � na dA: ð24Þ
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Almost all models reported in the literature neglect the Ia
D term [21–23]. The same approximation is con-

sidered here as well. The term Ia
Q accounts for the interfacial transfer due to phase change, whereas Ia

J repre-
sents the transport phenomena between phases within dV by diffusion and is related to the gradients of
microscopic velocity, temperature and species concentration on each side of the solid/liquid interface dAa

[24]. Since in the volume-averaging approach that we will follow, the averaged equations from different phases
are added within the averaging volume dV, detailed modeling of the interfacial transfer terms Ia

J and Ia
Q can be

avoided [19]. The heat, mass or species lost from one phase is gained by other phases, i.e.
X
a

Ia
J ¼ 0 and

X
a

Ia
Q ¼ 0: ð25Þ
For momentum, the interfacial momentum fluxes due to solidification also balance each other, that isP
aIa

Q ¼ 0. However,
P

aIa
J in the diffused-interface (mushy) zone is modeled using Darcy’s law [25]:
X

a

Ia
J ¼ �

�‘
2
l‘hv‘i‘

Kð�‘Þ ; ð26Þ
where K(�‘) is the assumed permeability of the diffused-interface (see Assumption 2).
To arrive at a model tractable for computation, the variations of material properties in dVa are neglected,

although globally they may vary, that is Ælaæa = la, Ækaæa = ka, ÆD‘æ‘ = D‘, Ds = 0. We also assume that all
phases in the averaging volume are in thermodynamic equilibrium, i.e. ÆTaæa = ÆTbæb for any two phases a
and b. The concentration in the averaging volume is assumed to be solutally well mixed, that is, hCa

i i
a ¼ Ca

i .

3.2.1. Mass conservation

For the derivation of the volume-averaged equation of mass conservation using Eq. (21), we substitute
H = q, J = 0, and S = 0. By writing and adding the individual mass conservation equations for all phases,
we obtain:
r � v ¼ 0; ð27Þ
where we have further defined:
v ¼ �‘hv‘i‘: ð28Þ
Note that in this work, we have assumed that Ævsæs = 0 for all solid phases s = 2, 3, . . ., N.

3.2.2. Momentum conservation

For deriving the averaged equation of momentum conservation from Eq. (21), we take H = qv and S = b.
Furthermore, we assume a Newtonian fluid and hence the viscous-stress is given in terms of the rate of defor-
mation as,
r ¼ �p‘I þ l‘½rv‘ þ ðrv‘ÞT�: ð29Þ

Using the previous assumptions, and the definition of v given earlier, the final form of the averaged trans-

port equation of momentum transport then yields [25]:
oðqvÞ
ot
þr � q

vv

�‘

� �
¼ ��‘rhp‘i‘ þr � ½l‘ðrvþ ðrvÞTÞ� � �‘l‘ v

Kð�‘Þ þ �
‘q‘g; ð30Þ
where g is the gravity vector. The change in liquid density is here expressed using the Boussinesq approxima-
tion q‘ = q[(1 � bc(C �C0) � bT(T � T0)] and it appears only in the body force term. In other places, q‘ is re-
garded to be the same constant as q.

3.2.3. Energy conservation

For deriving the volume-averaged equation of energy conservation we take H ¼ qh ¼ q
P

a�
aha, where h

represents the total enthalpy. In addition, we consider in Eq. (21), S = 0 and utilize Fourier’s law
J = � k$T, with k �

P
a�

aka. Eq. (21) then yields the following:
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oðqhÞ
ot
þr � ðqh‘vÞ ¼ r � ðkrT Þ: ð31Þ
We assume constant but unequal specific heat for all phases. Using linear relation between enthalpy and
temperature for each phase, a governing equation for energy conservation based on temperature can be
derived from Eq. (31) in the following form:
XN

a¼1

qca�a

 !
oT
ot
þ qc‘r � ðvT Þ ¼ r � ðkrT Þ þ

XN

s¼2

qLs _�s: ð32Þ
3.2.4. Species conservation

For arriving at the volume averaged equation of species conservation, we note that for this case in Eq. (21),
H = qCi, where Ci represents solutal concentration (per unit mass) for component i, and S = 0. Furthermore,
we utilize Fick’s law for species diffusion flux, that is, J = �qDi $Ci. We also assume no diffusion in the solid
phase Ds

i ¼ 0. The macroscopic transport equation of species conservation can then be derived from Eq. (21)
as follows:
oCi

ot
þr � ðC‘

i vÞ ¼ r � ð�‘D‘
irC‘

i Þ; ð33Þ
where
Ci ¼
X

a

�aCa
i : ð34Þ
Notice that C‘
i is only defined in the region with liquid fraction greater than zero (the liquid phase and dif-

fused interface). Particularly in the diffused-interface, the following holds C‘
i ¼ Cs

i=ks
pi
; 8s ¼ 2; 3; . . . ;N . Any

definition of C‘
i in the solid phase will not affect the validity of Eq. (33), since the two terms in Eq. (33) related

with C‘
i are multiplied with either v (which is zero in the solid) or �‘ (also zero in the solid). However, for

numerical reasons, C‘
i is usually taken to be a continuous function across the mushy zone. For example, C‘

i

is taken as the eutectic concentration for the solid phase in [25]. In this work, we follow the idea of [26] by
taking C‘

i ¼ Cs
i=ks

pi
in the solid phase. The activity scalar field is defined following [26] as:
aiðx; tÞ �
C‘

i ðx; tÞ; x 2 X‘
t ;

Cs
i ðx; tÞ=ks

pi
; x 2 Xs

t ;

(
ð35Þ
where ai(x, t) is continuous in the whole domain X. In particular within the diffused interface, we will have
C‘

i ¼ Cs
i=ks

pi
¼ ai. So Eq. (33) can be rewritten as
oCi

ot
þr � ðvaiÞ ¼ r � ð�‘D‘

iraiÞ; x 2 X‘; i ¼ 2; 3; . . . ; n; ð36Þ
where using the definition of mixture concentration, Ci ¼ �‘C‘
i þ
P

s�
sCs

i and Eq. (35), the relation between
concentration and activity is written as follows:
ai ¼
Ci

�‘ þ
P

s�
sks

pi

: ð37Þ
4. Numerical implementation

4.1. Multi-phase motion re-initialization technique

For a solidification system with only one solid phase, only one signed distance function is required since
/s = �/‘ everywhere. Correspondingly, only one level set equation (usually /s) needs to be solved. In this
work, we consider the possibility of multiple solid phases with s = 2, 3, . . ., N. A signed distance function
/a is defined for each phase a. The velocity on the solid–liquid interface is computed using Eq. (16). The veloc-
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ity on the solid–solid interface is zero, since solid–solid phase transformation is neglected in this work. With
interface velocity defined on the boundary of each phase, a set of level set equations (Eq. (10)) can be solved to
evolve the phase boundary for each phase. However, evolving each level set equation independently leads to
gaps or overlaps of zero level sets due to numerical error. This is a difficult problem addressed in many earlier
publications [27,28]. In this work, we use a reinitialization scheme based on the following property of signed
distances for a multi-phase system.

Property. Each point x in the domain X belongs to a phase a and has a closest phase b such that /a(x) = �/b(x)

and /a(x) 6 0 6 /b(x) 6 /c(x), "c, c 6¼ a, b.

In this work, we use a rather simple but efficient re-initialization scheme with the following three steps:

(1) For each node point x, find the smallest two signed distance functions /a(x), /b(x) such that
/a(x) 6 /b(x) 6 /c(x), "c 6¼ a, b. a will be the phase containing node point x and b will be the nearest
phase to x.

(2) Compute err ¼ /aðxÞþ/bðxÞ
2

. For all c (including a, b), update /c(x) as /c(x) � err.
(3) Use a fast marching technique to independently re-initialize each signed distance function.

This numerical scheme is very fast since the operation time for the three steps is only O(m), O(m) and
O(m log m), respectively, where m represents the number of nodes in the finite element mesh.

4.2. Fast marching technique

Reinitialization techniques based on structured meshes are described with detail in [12,13]. In an effort to
make our developments suitable for coupling with FEM-based solvers for heat transfer, fluid flow and solute
transport, we extend the fast marching method to unstructured grids and use it to implement the reinitializa-
tion procedure and extension of interface velocity. For convenience, we will only emphasize extension to the
positive region / > 0. Extension of fields to the negative region / < 0 follows similar methodology.

To simplify the presentation, only two-dimensional problems are addressed here. The fast marching
method uses tags to indicate the type of each node: ‘alive’, ‘band’ and ‘far away’, which are shown as black,
gray and empty circles, respectively, in Fig. 2. ‘Alive’ means that the value of a variable (e.g. of the level set
variable / or the interface velocity V) is already computed on the node and ready to be extended to other
nodes. A node adjacent to ‘alive’ nodes is ready to have its value extended and is marked as ‘band’. Other
nodes are simply marked as ‘far away’.

A very important idea in the fast marching method is that the level set function values should be extended
from the nodes closest to the interface to the nodes farthest from the interface in a well-defined order. In each
iteration, the ‘band’ node with smallest / will have its value extended. Note that when extending / itself, the /
value on a ‘band’ node is just an estimate which is updated whenever one of its neighbor nodes becomes ‘alive’.
After the closest ‘band’ node becomes ‘alive’, its ‘far away’ neighbors may be captured into ‘band’. One con-
tinues with this process until all ‘band’ nodes become ‘alive’.

How to find the closest ‘band’ node as fast as possible for extension of value is very crucial. A simple way is
to check all of the nodal points, which leads to a method of operation time O(m) for each iteration with m the
number of nodes. The fast marching method uses a balanced heap data structure to store all the ‘band’ nodes
with the nearest node always at root. The balanced heap data structure will lead to a method of operation time
only O(log(mb)) for each iter with mb the number of ‘band’ nodes. Details of implementation and algorithms
of heap data structures are given in [12,13].

Upwind element. When we estimate value at a ‘band’ node P, there can be more than one finite element,
which has all nodes ‘alive’ except P (e.g. element (A, B, P) and (B, C, P) shown in Fig. 2). We define as upwind

element of a ‘band’ node the element with the smallest average / over all its ‘alive’ nodes. The upwind element
is used to extend value to the ‘band’ node. For example, if /A + /B < /A + /C, then element (A, B, P) will be
selected as upwind element to extend value to node P.

Extend values in the fast marching method. Application of the fast marching method involves estimating
the level set variable for a node from its ‘alive’ neighbors. Previous work [13] describes how to apply this
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Fig. 2. Fast marching scheme for an unstructured finite element grid in two-dimensions.
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extrapolation for structured grids. For unstructured grids, the problem boils down to estimating /P on node P
from the value at ‘alive’ nodes of its upwind element (e.g. /A on node A and /B on node B for the case shown
in Fig. 2). In the following, we will derive the formulation of extending values for the two-dimensional case.
Suppose, the other two ‘alive’ nodes of ‘band’ node P’s upwind element are A, B. The normal direction of /,
$/ = (/,1, /,2)T, in this upwind element will satisfy:
DxA DyA

DxB DyB

� �
/;1

/;2

 !
¼

D/A

D/B

� �
;

where D/A ” /A � /P, DxA ” xA � xP (similarly for other variables). For convenience, we redefine /P, /A, /B

as /, /1, /2 and define matrix M as
M �
DxA DyA

DxB DyB

� �
:

In order to calculate / (/P), we take
/;1

/;2

 !
¼M�1 /1 � /

/2 � /

� �

with each component /;i ¼

P
jðM

�1Þijð/j � /Þ ¼ �
P

jðM
�1Þij/þ

P
jðM

�1Þij/j. According to the property of
signed distance i$/i = 1, we can write:
X
i

X
j

ðM�1Þij/�
X

j

ðM�1Þij/j

 !2

¼ 1: ð38Þ
With the geometry-related matrix M and /j known, Eq. (38) becomes a quadratic equation for one single
variable /. Generally, Eq. (38) has two roots. If fast marching is used in the positive region (/ > 0), then
the larger root is used. Otherwise, the smaller root is used. Numerically, if the / value near the interface devi-
ates significantly from signed distance, the above quadratic equation may not attain any real root. Although
this did not occur in any of the simulations reported in this paper, for such cases / is taken to be /1þ/2

2
to make

the algorithm robust under any circumstances.
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For extension of any other variable (denote as H here, e.g. of the interface velocity), we can use the follow-
ing equation:
rH � r/ ¼ 0: ð39Þ
Similarly to extending the level set variable, we can write the following:
H;1

H;2

� �
¼M�1 H1 �H

H2 �H

� �
:

By defining the vector bDH = (H1 � H, H2 � H)T and bD/ = (/1 � /, /2 � /)T, and using Eq. (39), we obtain
ðM�1bD/;M
�1bDHÞ ¼ 0) bT

D/M�TM�1bDH ¼ 0:
Further by defining sT � bT
D/M�TM�1 ¼ ðs1; s2Þ, the variable H at node P can be derived as
H ¼ s1H1 þ s2H2

s1 þ s2

:

Notice that in Fig. 2, the nodes Q, R and S are not ‘band’ nodes (thus are not stored in heap structure) even
if they are neighboring one ‘alive’ node. This is because an upwind element with other two nodes ‘alive’ is
required to extend values in our algorithm. Nodes Q, R and S are not captured into ‘band’ until there is at
least one neighboring element with two other nodes (in 2D) ‘alive’.

Following the same procedure, the above fast marching techniques including reinitialization and interface
velocity extension can easily be extended to three-dimensional problems using a tetrahedral mesh. For exam-
ple, for extending values (level set variable or interface velocity) from A, B, C to P, the matrix M becomes,
M �
DxA DyA DzA

DxB DyB DzB

DxC DyC DzC

0B@
1CA;
with DxA, DyA, . . . defined as before. The form of single variable quadratic equation (Eq. (38)) remains the
same, except that the summation is done in three dimensions. The formula for extension of velocity becomes
H ¼ s1H1 þ s2H2 þ s3H3

s1 þ s2 þ s3

:

4.3. Adaptive meshing technique

4.3.1. Mesh refinement procedure in two-dimensions

A uniform mesh is computationally inefficient since phase boundaries often require finer mesh density. For
a given time step, a non-uniform mesh with finer mesh density near phase boundaries can greatly speed up the
computation. However, the fact that phase boundaries are moving with time, requires fast adaptive meshing
for each time step. In [11], a refinement procedure based on structured grids is used. Each box element, which
needs refinement, is divided into a few smaller elements (four elements in 2D and eight elements in 3D). The
adapted grid will have so-called ‘hanging’ nodes which appear whenever an element has a neighbor whose
refinement level differs by one. Notice that ‘hanging’ nodes make the grid not conforming, thus not very con-
venient for finite element computation. To ensure continuity of the solution between elements, constraints are
enforced for solution at each ‘hanging’ node [11]. In this work, we implemented a technique based on unstruc-
tured grids (triangles in 2D and tetrahedrons in 3D), which is more convenient for meshing with irregular
geometry. A scheme with little computational cost (proportional to the number of ‘hanging’ nodes) is devel-
oped to make the grid conforming by linking the ‘hanging’ nodes in a compatible way.

At first, an initial coarse triangle mesh needs to be generated using any suitable mesh generator. If refine-
ment is desired in a region, a triangle element may be subdivided into four small triangles with the same size
and shape by adding middle points of the three edges. If the neighboring element is already refined then middle
point of the neighboring edge does not have to be inserted since it is already there.
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Information about the level of refinement is stored in a tree data structure, which is capable of tracking sons
(refined elements) or ancestors (unrefined element) for each element. The refinement level of an element is
defined according to its position in the tree data structure. Elements at the root (in the initial coarse mesh)
have refinement level 0. Elements which are generated by refining elements with refinement level n are assigned
refinement level n + 1. Refinement level of the mesh is defined as the maximum refinement level of elements in
the tree data structure. A typical sequence of refinement is shown in Fig. 3, along with the associated data
structure.

In general, the mesh will not be suitable for finite element analysis after refinement, since middle points may
exist on element edges as shown in the refined mesh in Fig. 3. In order to make the mesh conforming, two
more steps are taken as follows:

(1) Elements are further refined so that the refinement level for each two neighboring elements differs by at
most 1 as shown in step (1) of Fig. 4.

(2) An element neighboring another element with higher refinement level is subdivided into a few connecting
elements by connecting its nodes and middle points on edges as shown in step (2) of Fig. 4.

Using this adaptive meshing technique, the quality of the triangles (note that elements with all angles equal
to 60� are considered to be of the best quality) will be exactly the same as the input mesh since the refinement
does not change the element shape. This, however, is not the case for the connecting elements (elements gen-
erated by linking the hanging nodes). Moreover, linear interpolation of data only needs to be done for newly
inserted middle points by just taking the average of data on end points. These advantages make the present
adaptive meshing technique very suitable for transient problems.

4.3.2. Mesh refinement procedure in three-dimensions

The basic mesh refinement procedure in three-dimensions is similar to that used earlier in two-dimensions.
However, there are a few additional challenges.

Each tetrahedral element is divided into eight child elements. The shape of child elements is not preserved as
shown in Fig. 5. Moreover, there are three options to divide a tetrahedron into eight smaller tetrahedrons. We
compare the length of the line segments 4–9, 5–8, 6–7 (Fig. 5), and choose the option corresponding to the
shortest length. This ensures that the sum of edge lengths is minimized in refinement and consequently, the
mesh quality is maintained.

As in two-dimensions, linking elements with ‘hanging’ nodes on some of the middle of their edges are gen-
erated after the first procedure of refinement. In order to make the mesh conforming, it is necessary to link the
‘hanging’ nodes in a compatible way such that (1) each linking element is divided into a few smaller ones with-
out ‘hanging’ nodes as shown in Fig. 6, (2) the common faces of neighboring elements are divided in the same
way to avoid the error shown in Fig. 7.
Fig. 3. Schematic of the refinement procedure for unstructured grids in two-dimensions. The broken line refers to the interface to be
represented. Continuous line demonstrates the linear representation of the interface using the adaptive mesh.



Fig. 4. Schematic of generating a conforming grid in two-dimensions.
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Fig. 5. Three options of refining a tetrahedral element in 3D.

L. Tan, N. Zabaras / Journal of Computational Physics 221 (2007) 9–40 21
4.3.3. Mesh refinement criterion

Different criterions can be used to determine whether an element needs to be further refined or not. For
example, in [29] a refinement criterion was used based on the temperature gradient within the element e as
follows:
ErrorðeÞ �
Z

Xe
krTkdX < tolT : ð40Þ
Similarly, a criterion based on solute gradient can also be used as follows:
ErrorðeÞ �
Z

Xe
krCkdX < tolC: ð41Þ
In this work, since we can determine how far away a node point is from an interface based on the computed
signed distances, we select a refinement criterion according the signed distances as follows:
he < max
j/j
4
;w

� �
; ð42Þ
where he is a characteristic length of the element computed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
areaðeÞ

p
, |/| is the minimum distance to the

interface of the element computed from the value of signed distances on each element node. Notice that
Fig. 6. Various types of linking element in 3D.
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the value of w is preselected as a spatial discretization parameter. Based on this value of w and level set field /,
the mesh is refined with the refinement criterion to be sure that (1) fine mesh is obtained when near the inter-
face and coarse mesh is sustained when far away from the interface, and (2) at least one or a few elements are
contained within the artificial diffused-interface (mushy) zone. w serves as a lower bound for he in Eq. (42),
since generally two elements in the artificial mushy zone are enough. If more elements (e.g. four elements)
are desired to numerically resolve the artificial mushy zone, w in Eq. (42) needs to be replaced with a smaller
value (e.g. w

2
, so that the criterion in Eq. (42) becomes he < maxðj/j

4
; w

2
Þ).

4.3.4. Narrow band computation

Adaptive meshing can drastically reduce the number of degrees of freedom, especially for computation of
heat, momentum and solute transport. However, for the level set evolution, adaptive mesh computation on the
whole domain is not very efficient. Level set computation can be performed on a narrow band near the inter-
face, instead of on the whole domain [12,13]. An example of narrow band computing mesh (for level set only)
is shown in Fig. 8.

4.4. Adaptive time step technique

For many dendritic solidification growth problems, initial conditions are given before the formation of
thermal and solutal boundary layers. The initial interface velocity is large in comparison to the interface veloc-
ity after the build up of thermal and solutal boundary layers. Correspondingly, a small time step should be
used initially. However, such small time step is not required in later stages. In order to speed up the compu-
tation, adaptive time step technique is adopted in this work. We select the time step size according to a CFL-
type criterion of the form
Dtnþ1 ¼ kCFLw=maxðjV n
InterfacejÞ; ð43Þ
where maxðjV n
InterfacejÞ is the maximum interface velocity at all phase boundaries. kCFL is a coefficient control-

ling the accuracy, and unless is otherwise stated it is selected as 0.6 in all numerical examples. Eq. (43) guar-
antees that the interface advances about 0.6w in each time step at places with maximum interface velocity
(normally at tips).

Note that in all of the subproblems including fluid flow, heat transfer, solute transport and level set evo-
lution, fully-implicit backward Euler scheme is adopted for time integration in order to achieve uncondition-
ally stability regardless of the time step size. The selection of the time step size is mainly based on solution
accuracy requirements and is not related with stability issues [16].

4.5. Finite element implementation

In this work, the adaptive meshing technique generates triangle/tetrahedral type unstructured grids. The
finite element technique is thus adopted for computations including fluid flow, heat transfer, solute transport
and level set evolution. For heat transfer and solute transport, the classical SUPG stabilizing technique is used
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following our previous work [25]. Below, we will mainly concentrate on the stabilization techniques for fluid
flow and level set computations.

4.5.1. Stabilized finite element method for fluid flow
Let us define the function spaces Sv and Sp as follows:
Sv ¼
deffvjv 2 ðL2ðXÞÞnsd

; div v 2 L2ðXÞ; v ¼ 0 on Cg; ð44Þ

Sp ¼deffpjp 2 L2ðXÞ;
Z

X
p dX ¼ 0g: ð45Þ
The classical Galerkin formulation for the flow problem (Eq. (30)) can be stated as follows: Find
V ¼deffv; pg 2 Sv � Sp such that for all W ¼def fw; qg 2 Sv � Sp the following holds:
BðW ;VÞ ¼ LðWÞ; ð46Þ

where
BðW ;VÞ ¼
Z

X
w � qov

ot
þ qv � rv

�‘
þ �‘l‘

Kð�‘Þ v
� �

dX�
Z

X
pr � wdX

þ
Z

X
l‘rw � ðrvþrTvÞdXþ

Z
X

qqr � vdX; ð47Þ

LðWÞ ¼ �
Z

X
w � �‘q½bcðC � C0Þ þ bT ðT � T 0Þ�g dXþ

Z
X

p
�‘

w � r�‘ dX: ð48Þ
The above formulation theoretically works only for certain velocity and pressure interpolations. In the finite
element implementation of the Navier–Stokes equations, stabilizing techniques are needed to accommodate
equal-order interpolation velocity–pressure elements. Let us define a modified pressure space S0p as follows:
S0p ¼
def pjp 2 H 1ðXÞ;

Z
X

qdX ¼ 0

� �
: ð49Þ
The stabilized weak form proposed here is the following: find V ¼ fv; pg 2 Sv � S0p such that for all
W ¼ fw; qg 2 Sv � S0p the following holds:
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BstabðW ;VÞ ¼ LstabðWÞ; ð50Þ

where
BstabðW ;VÞ ¼ BðW ;VÞ þ
Z

X
Fðv; pÞ � Gðw; qÞdX;

LstabðWÞ ¼ LðWÞ þ
Z

X

p
�‘
r�‘ � �‘q½bcðC � C0Þ þ bT ðT � T 0Þ�g

n o
� Gðw; qÞdX:
The following definitions have been introduced in the above equation:
Fðv; pÞ ¼ q
ov

ot
þ qv� � rv

�‘
þrp þ �‘l‘

Kð�‘Þ v�r � ½l
‘ðrvþrTvÞ�; ð51Þ

Gðw; qÞ ¼ s1

v� � rw

�‘
� s2�

‘

Kð�‘Þq w� s3

q
r � ½l‘ðrwþrTwÞ� þ s4rq ð52Þ
with v* a divergence-free velocity obtained from the previous iteration. s1, s2, s3 and s4 are parameters for the
advection (SUPG), Darcy drag (DSPG), diffusion and pressure (PSPG) stabilizing terms. The selection of their
values is discussed in [25,30].

4.5.2. Stabilized finite element method for level set computation

The weak form of the level set equation (Eq. (10)) is
Z
X

d/að/a
t þ V ajr/ajÞdX ¼ 0; ð53Þ
where d/a is a test function in C0. To avoid oscillations, GLS and diffusion stabilizing term are introduced as
shown in the following formulation [31]:
XNel

e¼1

Z
Xe

d/a þ se
/a

V ard/a � r/a

jr/aj

� �	 

/a

t þ V ajr/aj
� �

þ ðtrd/a � r/aÞdXe ¼ 0; ð54Þ
which further leads to the following semi-discretized form:
ðM/a þMGLSÞ _/a þ f a
/ þ fGLS þ fSC ¼ 0;

Ma
/ ¼

XNel

e¼1

Z
Xe

NTN dXe; MGLS ¼
XNel

e¼1

Z
Xe

ðrN T � r/a

jr/aj V
aÞse

/aN dXe;

f a
/ ¼

XNel

e¼1

Z
Xe

N TV ajr/ajdXe; f GLS ¼
XNel

e¼1

Z
Xe
rN T � r/a

jr/aj V
a

� �
se

/aV ajr/ajdXe;

fSC ¼
XNel

e¼1

Z
Xe

trNT � r/a dXe:
In our computation, the GLS stabilize term parameter se
/ is selected as 10�3 he

jV aj. Since sharp corners often
exist near triple points, we use a larger diffusion stabilizing term at triple points than at other places:
t ¼ 10�4he for triple points ð9a 6¼ b 6¼ c; s:t: �a; �b; �c > 0Þ;
10�6he otherwise:

(
ð55Þ
4.6. Overall solution procedure

The various subproblems considered here include the thermal, flow, solute species problems as well as the
interface evolution. The tolerance level used to define convergence in all four main solution steps (heat, sol-
ute, momentum and level set) is set at 10�12. The error criterion is based on the relative error in the solu-
tions obtained between Newton–Raphson iterations within a time step. For example, in the fluid flow
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solver, the error norm is defined as kDU iþ1k=kU iþ1
n k where U = [v, p]. The overall algorithm is summarized

below:

(1) At time tn, all fields such as velocity vn, temperature Tn, concentrations Cin , level set variables /a
n, etc. are

known.
(2) Determine Dt (adaptive time step) and generate the new mesh for this time level (adaptive meshing).

(3) Advance to time step tn+1 = tn + Dt. Set j = 0, vj¼0
nþ1 ¼ vn, T j¼0

nþ1 ¼ T n, Cj¼0
inþ1
¼ Cin, /aj¼0

nþ1 ¼ /a
n, etc., where j

is an iteration index and the subscript denotes the time level.
(4) Start an inner loop to solve the coupled system till converged.
(a) Compute velocity at phase boundaries, use fast marching to extend velocity to the whole domain.
(b) Solve the level set equation for all phases to get the signed distance functions /aj

nþ1 .
(c) Solve the energy equation to obtain T j

nþ1.

(d) Solve the solute equations to obtain Cj
inþ1

for each component i.
(e) Solve the momentum equation to obtain vj

nþ1.
(f) j = j + 1. If not converged, return to (a).
(5) Use the re-initialization scheme to remove gaps or overlapping between /a for different phases and
ensure that all /a are signed distance functions.

5. Numerical examples

5.1. Crystal growth in an undercooled binary alloy

This example was originally addressed in [4] using a front-tracking method. The material parameters defin-
ing the problem are density qs = q‘ = 1, heat capacity cs = c‘ = 1, heat conductivity ks = k‘ = 1, latent heat
L = 1, solute diffusivity D‘ = 0.1, Ds = 0, liquidus slope m =� 0.035 (so that Ts‘(C‘) = mC‘) and partition
coefficient kp = 0.312. On the freezing interface Cs‘, we consider the Gibbs–Thomson relation given in Eq.
(6) with ec = eV = �0.002.

At time zero, we consider a small solid seed in the middle of the computational domain. Its geometry is
described as follows:
xðsÞ ¼ ðRþ P cosð8psÞÞ cosð2psÞ;
yðsÞ ¼ ðRþ P cosð8psÞÞ sinð2psÞ;

ð56Þ
where R = 0.1 and P = 0.02. The initial concentration of the seed and the undercooled melt are kpC0 and C0,
respectively with C0 = 2.2%. The initial temperature of the seed and the undercooled melt are taken as Ts‘(C0)
and Ts‘(C0) � 0.5, respectively.

Fluid flow is not considered in this example. The computational domains for the temperature and solute
fields are taken as [�10,10] · [�10,10] and [�2,2] · [�2,2], respectively. Insulated boundary conditions are
considered for both temperature and solute at all sides of the respective computational domains.

Based on the very coarse input mesh shown in Fig. 9a, an adaptive mesh is generated in each time level with
a part of it used for the calculation of the solute field and the whole mesh used for temperature calculations as
shown in Figs. 9c and d, respectively. At t = 1.0, the effect of the domain boundary on the temperature field is
small since the temperature boundary layer is far away from the boundary as shown in Fig. 9f. The obtained
micro-segregation pattern with maximum concentration about 5.0% is shown in Fig. 9e and it compares well
with the results obtained in [4] using a sharp-interface (front-tracking) model. Comparison of the interface
position at t = 1 with the results given in [4] is shown in Fig. 9b.

We also tested the effects of mesh orientation by rotating the initial crystal by 45�. The mesh for solute
transport colored with solute concentration at time about 0.6 is shown in Fig. 10b. The similarity between
Figs. 10a and b indicates that the obtained numerical results do not depend on the mesh orientation.

Using mesh refinements based on the level set, temperature gradient (tolerance = 2 · 10�5) and concentra-
tion gradient (tolerance = 1 · 10�5), the meshes shown in Fig. 11 were generated with a quarter of each mesh
shown for easy comparison. It can be seen that all meshes provide similar results for the interface position,



Fig. 9. (a) 1/4 of the input mesh. (b) The interface at t = 1.0. (c) 1/4 of the mesh used for solute computation (t = 1.0). (d) 1/4 of the mesh
used for temperature computation (t = 1.0). (e) Solute concentration (t = 1.0). (f) Temperature (t = 1.0).
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Fig. 10. Mesh for solute transport at time about 0.6 colored with the concentration field: (a) without crystal rotation; (b) with crystal
rotation.
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except that the interface position generated using the $T-based mesh criterion is a bit flattened at the dendrite
‘valleys’. This is due to the small temperature gradient and correspondingly low mesh density at this location.
With the criterion based on $C, many more elements were generated at the ‘valleys’. This suggests that the
criterion based on $T is not as good as the criterion based on $C or /. The mesh generated with the criterion
based on $C is very similar to the mesh generated with the criterion based on /, except that it results in a
higher mesh density at the middle of the crystal due to micro-segregation within the solid crystal.
Fig. 11. Mesh generated using different mesh-refinement criteria.
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In the above benchmark problem, we compared our results with the results obtained using a front tracking
method. To allow a comparison with the phase field method for further validation of our algorithm, we briefly
consider a problem similar to the one examined in [32] by choosing material properties ks = kl = 1, cs = cl = 1,
L = 1, q = 1, kp = 0.15, ml = �1, C0 ¼ 0:07

1�0:15
, Dl ¼ 1

40
and undercooling 0.55. We write the values of C0 and Dl

in this unfinished form, so that the reader can easily refer to both papers for the connection between the two
models. The initial crystal used in our computation is a circular seed with radius 80 and without perturbation.
The anisotropy in the Gibbs–Thomson relation is defined as T* = �d0(1 � 15ecos 4h)j, d0 = 1, e = 0.02,
where h is the angle between the interface direction and the x-axis. We use an initial grid of 1 · 1 and 9 refine-
ment levels to discretize a domain of 1500 · 1500. The results of this example are shown in Fig. 12. To facil-
itate comparison between the two models, we provide the computed dimensionless temperature at the
dimensionless time 280,000. However, for concentration shown in the results, we use the concentration C

instead of the definition in [32]. This is because the definition of dimensionless concentration in [32] requires
a phase field variable, which is not applicable in our model. Comparing our results with those in Fig. 1 of [32],
we note that the tip radius and position are practically the same. The solute boundary layer is also found to be
much thinner than the thermal boundary layer due to the large Lewis number. However, there are some small
differences of the interface shape at location around (300, 300), where perturbations are about to develop.

5.2. Planar/cellular/dendritic transition

The relationship between the solidification growth velocity and the primary arm spacing described by the
Mullins–Sekerka theory has been numerically studied using phase field methods [33,34]. In these studies, the
temperature gradient is assumed to be constant during directional solidification and the energy equation is not
solved. Instead, the temperature field is obtained by moving the initial temperature field with a given velocity.
Fig. 12. The solid/liquid interface shape at time 280,000. The upper and lower boxes show the temperature and solute concentration fields,
respectively.
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Fig. 13. Problem definition for study of planar/cellular/dendritic transition.
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In this example, the simulations are performed under similar conditions to those of [33,34]. However, the
simplifications on the temperature field are not taken here. The framework shown in Fig. 13 is adopted for
a Ni–Cu alloy with the following important parameters [33,34]: melting temperature Tm = 1728 K, liquidus
slope m = 357 K/at. frac., initial concentration C0 = 0.40831 at. frac., latent heat L = 2350 J/cm3, solute
diffusivity D‘ = 10�5 cm2/s, surface tension r = 3.7 · 10�5 J/cm2, Gibbs–Thomson coefficient ec = rTm/
L = 2.7207 · 10�5 cm K, temperature gradient G = q‘/k = 2.15 · 104 K/cm, partition coefficient kp = 0.86,
heat capacity c = 0.46 · 103 J/kg K, density q = 8.880 · 10�3 kg/cm3, heat diffusivity k = 6.07 · 10�1 W/
cm K, and domain size is [(1.76 · 10�3 cm) · (4.40 · 10�3 cm)]. No initial perturbation is introduced (an ini-
tially planar solid–liquid interface is assumed). The numerical error acts as a perturbation that leads to unsta-
ble growth pattern for the four considered growth velocity values (0.1 cm/s, 0.2 cm/s, 0.4 cm/s and 0.8 cm/s) as
shown in Fig. 14.

We also plotted the obtained wavelengths for different growth velocities in Fig. 15 together with
k2V = 1.6 · 10�14 m3/s and the MS (Mullins–Sekerka) loop. The MS loop is the zero contour plot of

_d
d, where

d is the perturbation amplitude with wavelength k [35]. Within the MS loop,
_d
d > 0., the perturbation with

wavelength k increases and therefore the interface is unstable. Outside the MS loop,
_d
d < 0 and the perturbation

with wavelength k damps out. Planar interfaces are obtained with growth velocity 0.01 cm/s and 10 cm/s as
demonstrated in Fig. 16. The upper limit of solidification speed for cellular growth is the absolute stability,
Va, velocity. Its approximate value is given in [36] as V a � �mlC0ð1�kpÞD

k2
pC

, which is about 10 cm/s in this problem.

In the above computation, we use an initial mesh of 50 · 20. Two levels of refinement for velocity 0.01 cm/s,
0.1 cm/s, 0.2 cm/s and three levels of refinement for velocity 0.4 cm/s, 0.8 cm/s, 10 cm/s are performed using
the adaptive meshing technique. A typical mesh colored with solute concentration is shown in Fig. 17.

The computed solute boundary layer in front of the dendrite tips is shown in Fig. 18. Using the method
discussed in [36], the equivalent solute boundary layers shown in Fig. 18 are about 2.2 · 10�4 cm,
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Fig. 14. Cellular growth for various growth velocities (axes unit: cm).
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Fig. 16. Planar growth at small and large velocities (axes unit: cm).
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1.2 · 10�4 cm, 0.6 · 10�4 cm and 0.3 · 10�4 cm for growth velocity values of 0.1 cm/s, 0.2 cm/s, 0.4 cm/s and
0.8 cm/s, respectively. These values agree with the analytical approximation of the solutal boundary layer
(�2Dl/V � 1/V).

For the initial solute concentration C0 = 0.40831, we only observed planar and cellular growth patterns.
The surface tension and thermal gradient prevent the transition from cellular to dendritic. Generally, the
growth pattern is less stable for material with smaller surface tension, smaller partition coefficient and higher
concentration. In this case, the surface tension and partition coefficient are assumed to be constant. In order to
capture the dendritic growth pattern of Ni–Cu alloy, we increase the copper concentration to 0.6. With growth
speed 0.2 cm/s, we observed three solidification stages: (1) planar growth; (2) cellular growth; and (3) dendritic
growth (Fig. 19). Initially, the growth pattern is planar. Then about six cells are formed. Due to competition,
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Fig. 17. Adaptive mesh colored with solute concentration.
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only three major cells are left in the computational domain. Secondary branches are observed in the segrega-
tion pattern (Fig. 19).

5.3. Alloy solidification with multiple solid phase growth

For many alloy solidification systems, multiple solid phases are formed. Eutectic and peritectic are the most
common solidification microstructures with multiple solid phases. These solidification systems were addressed
earlier using multi-phase field models with a comprehensive review given in [7]. Here we present the results
obtained with the present level set model for an eutectic growth problem [37] and a peritectic growth problem
[38].

5.3.1. Eutectic growth

For directional eutectic solidification with two solid phases a and b, we use the same framework shown in
Fig. 13. A temperature gradient G = 50 K/cm is maintained at the right side and a cooling rate of
R = 0.005 K/s is applied at the left side. Initially, a few b seeds are embedded in the a phase. Other important
parameters are [37]: liquidus slops ma = � 10 K/at.% and mb = + 5 K/at.%, partition coefficients ka

p ¼ 0:1 and
kb

p ¼ 0:05, diffusion coefficient D‘ = 10�5 cm2/s, surface energy r = 10�5 J/cm2, eutectic composition Ceut/
Cb = 0.2 with Cb = 5 at.%, latent heats La = Lb = 1000 J/cm3, heat capacity c = 1 · 103 J/kg K, density
q = 1 · 10�2 kg/cm3, heat diffusivity k = 1.0 W/cm K, eutectic temperature Te = 1000 K and finally domain
size [0.4 mm · 0.12 mm].
Fig. 19. Solute concentration and adaptive mesh near tips of dendritic growth at copper concentration 0.6 at. frac.
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By putting initially four b seeds (red region shown in Fig. 20) into the a phase (blue region shown in
Fig. 20), the eutectic growth follows a stable pattern as shown in Fig. 20 with a stable growth wavelength
of about 30 lm. In [37], the stable growth wavelength reported was about 25 lm. If only two b seeds are
inserted initially in the a phase, then the eutectic growth becomes unstable. Valleys with high solute concen-
tration will form in the middle of the a–‘ phase interface as shown in Fig. 21. This is because with only two b
seeds, the solute rejected during the transformation of the liquid to the a solid phase cannot be easily absorbed
by the b phase. The accumulation of solute will further slow down the growth rate of the a phase and form
valleys. Since the high solute concentration favors the growth of b phase, the width of the b phase increases as
shown in Fig. 21. This unstable eutectic growth pattern for fewer b phase seeds was previously pointed out in
[37]. If ten b seeds are inserted initially in the a phase, half of the seeds stop growing after the tips are about
6 lm away from the left boundary. The growth of the remaining five seeds shows an oscillatory pattern.
Finally, one more seed stops growing. The remaining four b seeds adjust their wavelength to about 30 lm
as shown in Fig. 22.

5.3.2. Peritectic growth

Fe–0.3 wt%C alloy is considered with the following parameters: domain size 150 lm · 700 lm, cooling rate
R = �3 K/s applied at the bottom, thermal gradient G = 140 K/cm maintained at the top, diffusion coefficient
Dl = 3 · 10�5 cm2/s and surface tension r = 2.04 · 10�4 J/cm2. The thermodynamic data are taken from the
Fe–C phase diagram [38]. Initially, an initial small crystal is put in the bottom-left corner. The initial grid size
is 3 · 14 with five levels of refinement. During the growth of the ferrite the redistribution of carbon leads to
morphological instability and a dendrite evolves. Below the peritectic temperature the austenitic seeds are gen-
erated by nucleation. The austenite grows around the undercooled part of the ferritic dendrite as shown in
Fig. 23. Before time 1.6 s, the solute concentration is less than 0.51 wt% and thus only the ferritic phase is
formed. As the solute concentration accumulates to be more than 0.51 wt% behind the dendrite tips, the
austenitic phase is nucleated and formed around the secondary dendrite arms. Table 1 provides a comparison
of the computed results with those reported in [38].

5.4. Ternary alloy with melt convection effects

Crystal growth for pure materials under convection has been well studied using phase field methods
[17,18,39], front tracking methods [2] and level set methods [16]. In these studies, the growth of only one
crystal is investigated with a prescribed inlet flow velocity. In [40], Ostwald ripening of Al–Cu particles in
Fig. 20. Solute concentration at time about 80 s and the evolution of the interface position (with four b seeds). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)



Fig. 21. Solute concentration at time about 80 s and the evolution of the interface position (with two b seeds).
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the presence of melt convection was studied using the phase field method with a flow driven by a constant
pressure drop. Fully coupled dendritic alloy solidification growth with heat, solute and momentum transport
is computationally very difficult due to the various length scales involved. In order to resolve the dendrite tip
or solute boundary layer, a small grid spacing is required. For the study of crystal growth of pure materials
with a prescribed flow as in [2,16–18,39], a computation domain in the size of the thermal boundary layer is
required. Developing substantial buoyancy driven flow requires even larger domain and correspondingly lar-
ger grid node/element number. The example in this section is the first study fully coupling dendritic growth
with heat, solute and momentum transport for alloy solidification.

In this example, we consider a Ni based alloy with 5.8 wt%Al and 15.2 wt%Ta. The purpose of this example
is to demonstrate the ability of the algorithms presented in this paper to couple solute diffusion of multiple
components with convection. Only one solid phase is considered. Thermodynamic and transport properties
for this alloy are obtained from [41] based on the one solid phase simplification.

Initially a cavity of size 0.025 m · 0.025 m is filled with alloy of Ni–5.8 wt%Al–15.2 wt%Ta at its liquidus
temperature (without superheat or undercooling). A cooling rate of 0.28 K/s is applied at the bottom and
Fig. 22. Solute concentration at time about 80 s and the evolution of the interface position (with ten b seeds).



Fig. 23. Solute concentration for peritectic growth of an Fe–C alloy at time 0.6 s, 1.0 s, 1.5 s, 1.8 s and 2.4 s.

Table 1
Comparison of the results obtained with the current methodology for peritectic growth with those given in [38]

Quantity Present calculations From [38]

Tip velocity of ferritic dendrite (lm/s) 195 200
Distance of austenitic phase behind dendrite tip (lm) 300 350
Solute boundary layer (from contour plot) (lm) �50 �50
Time of austenitic phase growth (s) 1.6 1.5–2.2
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sides. The top side is assumed to be adiabatic. Utilizing symmetry, computation is done only in the left half of
the domain. For adaptive meshing, we use an initial grid 1 · 2 and a refinement level of 10, which corresponds
to a full mesh of 1024 · 2048. With this mesh, the width of the diffused interface is 12.2 lm, which is a rea-
sonable value for meso-scale simulations. The CFL coefficient for adaptive time stepping is 0.5.
Fig. 24. Solute concentration of Al. On the left: without convection and on the right: with convection.



Fig. 25. Solute concentration of Ta. On the left: without convection and on the right: with convection.
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In order to study the effects of convection, we carried two simulation runs: one without convection and one
with buoyancy driven flow. With convection, the growth rate is about 22% faster than without convection.
The dendrite tip front reaches roughly the same position as shown in Figs. 24 and 25 at time about 161 s
in the case with convection and 196 s in the case without convection. Fig. 24 shows that the concentration
of Al in the solid phase is slightly decreased due to convection. The underlying reason is that fluid flow
enhances solute redistribution by taking away solute rejected from the dendrite tips into the liquid bulk.
On the other hand, solute accumulated before the dendrite tips can only be taken away by diffusion. This phe-
nomenon is more obvious for the Ta alloy component as shown in Fig. 25. The lower solute concentration in
front of the dendrite tips explains why the growth speed is higher for the case with convection. Fluid flow also
causes segregation. Solute concentration at the bottom of the cavity is higher than at the top of the cavity. This
Fig. 26. Adaptive mesh and interface position. In the right picture, the domain is colored with concentration of Ta for better visibility of
the flow field near the dendrite tips.
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leads to a significant difference in the dendrite growth velocity resulting in a non-uniform pattern as shown in
Figs. 24 and 25.

The adaptive mesh at time 161 s for the convection case is shown in Fig. 26. As shown in the magnified
picture in Fig. 26, fluid flow passes through the dendrite tips and creates small eddies which enhance the mix-
ing of solute.

5.5. Three-dimensional dendritic growth

Using Ni–Cu alloy with properties the same as in the example of Section 5.2, a simulation was presented
earlier of 3D crystal growth using a phase field model assuming constant temperature (1356 K) in a cubic
domain of size 3.5 · 10�3 cm [42]. An explicit scheme was used to perform computation on a mesh of 5003

(125 million degrees of freedom). In this work, we use an adaptive mesh with initial grid 53 and six levels of
refinement, which is equivalent to a uniform mesh of 3203 (32 million degrees of freedom). With very high
under-cooling (about 226 K), a high temperature gradient exists. So the simplification on the temperature
considered in [42] (i.e. assuming constant temperature) is not taken here. As shown in Fig. 27, substantial
secondary dendrite arms are formed behind the primary dendrite arms. Due to the significant under-cooling
(226 K), the steady growth tip velocity is as high as 3000 cm/s. With such a high growth velocity, both the
thermal and the solutal boundary layers are very thin as demonstrated in Fig. 28. The lowest concentration
in the crystal is observed along the x, y and z axes, which corresponds to the growth of the primary dendrite
tips.
Fig. 27. Computed Ni–Cu crystal shape at steps 1, 51, 101, 151 and 211.

Fig. 28. Solute and temperature field at step 151 for Ni–Cu crystal growth.



Fig. 29. Adaptive mesh colored with temperature at step 151 for Ni–Cu crystal growth. The figure on the right shows the magnified mesh
near the primary dendrite in the x direction.
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Computation for three-dimensional problems is often very intensive. With 16 nodes (each node with two
2048 MHz CPUs) in the Cornell Theory Center, this computation takes about 12 h. Using the adaptive mesh-
ing technique, the number of nodes and elements are only about 0.5 million and 3.0 million, respectively, at
step 211. Without adaptive meshing, 32 million nodes and 192 million elements will be required to give an
equivalent resolution. At previous time steps, the speed up of adaptive meshing is more obvious since the crys-
tal is small. A typical adaptive mesh used in the computation is shown in Fig. 29.

In order to study the convergence of our numerical algorithm for this problem, we use an adaptive mesh
with the same initial grid 13 and different refinement levels from 6 to 9 as shown in Fig. 30. Results show that
Fig. 30. Interface position and temperature field at times about 2e – 7 s, 7e – 7 s and 1.5e – 6 s (rows 1, 2 and 3), with the same initial grid
13 but different refinement levels from 6 to 9 (columns 1, 2, 3 and 4).



Fig. 31. Ni–Cu crystal growth with inlet flow from the top. Left: dendrite colored with interface velocity, mesh colored with temperature;
right: flow passing by the upstream and perpendicular stream.
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at least eight refinement levels (corresponding to a uniform mesh of 2563) are required to numerically resolve
the secondary dendrite arms.

The ability to study three dimensional pure material crystal growth under convection has been demon-
strated in our previous work [16]. The three-dimensional free dendritic growth computation results compared
very well with other numerical studies using phase field methods [29,43] at a high undercooling and front
tracking techniques [5] at a low undercooling. Here, we present the three-dimensional results of coupling fluid
flow for a binary alloy, which has not been previously reported in the literature. The same alloy Ni–Cu is used
with the same conditions except that an inlet flow with velocity 0.1 m/s is applied at the top of the domain. In
this case, we use an initial grid of 1 · 1 · 2 with refinement level 8. This corresponds to a full mesh of
256 · 256 · 512. Only 1/4 of the total domain is used due to symmetry. Similar to the pure material free den-
dritic growth case [16,29,43], crystal growth at the upstream arm is enhanced. However, unlike the pure mate-
rial case in which the crystal growth is relatively smooth [16,29,43], perturbations quickly develop into
secondary dendrite arms as shown in Fig. 31.

6. Conclusions

A level set method combining features of front-tracking and fixed domain methods is presented to model
dendritic solidification of alloy systems. Some of the key features of the presented method include: (a) accurate
tracking of the interfaces using the level set method; (b) heat/mass/momentum transport computation by
avoiding direct application of interface conditions (solid/liquid boundaries); (c) 2D/3D finite element compu-
tation with fast adaptive meshing; and (d) multiple solid phase capability. The method is substantially simpler
to implement relative to front tracking models and can serve as an efficient alternative approach to multi-
phase field methods.

The numerical investigations shown here have demonstrated that the present method can serve as an accu-
rate and computationally effective alternative tool for modeling multi-phase multi-component alloys. Current
work is in progress to apply this methodology to multi-scale alloy solidification.
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